## MATHEMATICS SOLUTION

(MAY 2018 SEM 4 MECHANICAL)

Q1) (a) If $\lambda$ is eigen value of matrix $A$, then prove that $\lambda^{n}$ is a eigen value of $A^{\boldsymbol{n}}$ and hence find the eigen values for $A^{2}+2 A+5 I$, where $\left[\begin{array}{ccc}2 & 1 & -2 \\ 0 & 2 & 4 \\ 0 & 0 & 3\end{array}\right]$.

## Solution:

Since $\lambda$ is an eigenvalue of A if X is the corresponding eigenvector.
$A X=\lambda X$
Pre-multiply by A,
$A A X=\lambda A X$
$A^{2} \mathrm{X}=\lambda \mathrm{AX}=\lambda \lambda \mathrm{X}=\lambda^{2} \mathrm{X}$
$\mathrm{A}^{2} \mathrm{X}=\lambda^{2} \mathrm{X}$
Similarly, $\mathrm{A}^{3} \mathrm{X}=\lambda^{3} \mathrm{X}$.
Continuing in this way $\mathrm{A}^{\mathrm{n}} \mathrm{X}=\lambda^{\mathrm{n}} \mathrm{X}$
$\lambda^{n}$ is a eigen value of $A^{n}$, hence proved

$$
\begin{aligned}
A^{2}+2 A+5 I & =\left[\begin{array}{ccc}
2 & 1 & -2 \\
0 & 2 & 4 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & -2 \\
0 & 2 & 4 \\
0 & 0 & 3
\end{array}\right]+2\left[\begin{array}{ccc}
2 & 1 & -2 \\
0 & 2 & 4 \\
0 & 0 & 3
\end{array}\right]+5\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
4 & 4 & -6 \\
0 & 4 & 20 \\
0 & 0 & 9
\end{array}\right]+\left[\begin{array}{ccc}
4 & 2 & -4 \\
0 & 4 & 8 \\
0 & 0 & 6
\end{array}\right]+\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right] \\
& =\left[\begin{array}{ccc}
13 & 6 & -10 \\
0 & 13 & 28 \\
0 & 0 & 20
\end{array}\right]
\end{aligned}
$$

The Characteristic equation is
$|A-\lambda I|=0$
$\left|\begin{array}{ccc}13-\lambda & 6 & -10 \\ 0 & 13-\lambda & 28 \\ 0 & 0 & 20-\lambda\end{array}\right|=0$
$(13-\lambda)[(13-\lambda)(20-\lambda)-0]-6[0-0]-10[0-0]=0$
$(13-\lambda)(13-\lambda)(20-\lambda)=0$
$\lambda=13,13,20$
Hence the eigen values of $A^{2}+2 A+5 I$ are 13, 13 and 20 .
(b) The probability density function of a random variable $X$ is $f(x)=k x^{2}\left(1-x^{3}\right), 0 \leq x \leq 1$. Find $k$, expectation and variance of $x$.

## Solution:

We have $\int_{0}^{1} k x^{2}\left(1-x^{3}\right) \cdot d x=1$
$\int_{0}^{1} k\left(x^{2}-x^{5}\right) \cdot d x=1$
$k\left(\left.\left[\frac{x^{3}}{3}-\frac{x^{6}}{6}\right] \right\rvert\, x=0\right.$ to 1$)=0$
$k\left[\frac{1}{3}-\frac{1}{6}\right]=1$
k. $\frac{1}{6}=1$
$\mathrm{k}=6$
Mean $\bar{x}=E(x)=\int_{0}^{1} x f(x) d x$
$=\int_{0}^{1} 6 x^{2}\left(1-x^{3}\right) \cdot d x$
$=6 \int_{0}^{1} x\left(x^{2}-x^{5}\right) \cdot d x$
$=6 \int_{0}^{1}\left(x^{3}-x^{6}\right) \cdot d x$
$=6\left(\left.\left[\frac{x^{4}}{4}-\frac{x^{7}}{7}\right] \right\rvert\, x=0\right.$ to 1$)$
$=6\left[\frac{1}{4}-\frac{1}{7}\right]$
$=\frac{18}{28}=\frac{9}{14}$
$\mathrm{E}\left(x^{2}\right)=\int_{0}^{1} x^{2} f(x) d x==\int_{0}^{1} 6 x^{2}\left[x^{2}\left(1-x^{3}\right)\right] . d x$
$=6 \int_{0}^{1} x^{2}\left(x^{2}-x^{5}\right) \cdot d x$
$=6 \int_{0}^{1}\left(x^{4}-x^{7}\right) \cdot d x$
$=6\left(\left.\left[\frac{x^{5}}{5}-\frac{x^{8}}{8}\right] \right\rvert\, x=0\right.$ to 1$)$
$=6\left[\frac{1}{5}-\frac{1}{8}\right]$
$=\frac{18}{40}=\frac{9}{20}$

Variance $=\mathrm{E}\left(x^{2}\right)-[E(x)]^{2}$
$=\frac{9}{20}-\frac{81}{196}=\frac{441-406}{980}$
$=\frac{9}{245}$
(c) A machine is set to produce metal plates of thickness 1.5 cm with standard deviation 0.2 cm . A sample 100 plates produced by the machine gave an thickness of 1.52 cm . Is the machine fulfilling the purpose?

## Solution:

(i)The null hypothesis $\mathrm{H}_{0}: \mu=1.5$

Alternative hypothesis $\mathrm{H}_{\mathrm{a}}: \mu \neq 1.5$
(ii)Calculation of test statistic:

Since sample size is large $\mathrm{Z}=\mathrm{Z}_{\text {cal }}=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}=\frac{1.52-1.5}{0.2 / \sqrt{100}}=1$
(iii) Level of significance: $\alpha=0.05$
(iv) Critical value: the value of $Z \alpha$ at $5 \%$ level of significance $=1.96$
(v) Decision: since the calculated value of $|Z|=1$ is less than the table value $Z \alpha=1.96$. Therefore, the null hypothesis is accepted i.e. The machine fulfilling the purpose.
(d) Write the dual of the given LPP:

Minimise $Z=2 x_{1}+3 x_{2}+\mathbf{4 x}$
Subjected to: $2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+5 \mathrm{x}_{3} \geq 2$

$$
\begin{aligned}
& 3 x_{1}+x_{2}+7 x_{3}=3 \\
& x_{1}+4 x_{2}+6 x_{3} \leq 5
\end{aligned}
$$

$$
\begin{equation*}
x_{1}, x_{3} \geq 0 \text { and } x_{2} \text { is unrestricted. } \tag{5M}
\end{equation*}
$$

## Solution:

Minimise $\mathrm{Z}=2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+4 \mathrm{x}_{3}$
Subjected to: $2 x_{1}+3 x_{2}+5 x_{3} \geq 2$

$$
\begin{aligned}
3 x_{1}+x_{2}+7 x_{3} & \geq 3 \\
-3 x_{1}-x_{2}-7 x_{3} & \geq-3 \\
-x_{1}-4 x_{2}-6 x_{3} & \geq-5
\end{aligned}
$$

Since $x_{2}$ is unrestricted, we put $x_{2}=x_{2}{ }^{\prime}-x_{2}{ }^{\prime \prime}$
Minimise $Z=2 x_{1}+3 x_{2}{ }^{\prime}-3 x_{2}{ }^{\prime \prime}+4 x_{3}$
Subjected to: $2 \mathrm{x}_{1}+3 \mathrm{x}_{2}{ }^{\prime}-3 \mathrm{x}_{2}{ }^{\prime \prime}+5 \mathrm{x}_{3} \geq 2$

$$
\begin{aligned}
& 3 x_{1}+x_{2}^{\prime}-x_{2}^{\prime \prime}+7 x_{3} \geq 3 \\
& -3 x_{1}-x_{2}^{\prime}+x_{2}^{\prime \prime}-7 x_{3} \geq-3 \\
& -x_{1}-4 x_{2}^{\prime}+4 x_{2}{ }_{2}^{\prime \prime}-6 x_{3} \geq-5
\end{aligned}
$$

If $y_{1}, y_{2}, y_{2}{ }^{\prime \prime}, y_{3}$ are the dual variables and $w$ is the function of the dual then dual of the given problem will be

Maximise $\mathrm{w}=2 \mathrm{y}_{1}+3 \mathrm{y}_{2}{ }^{\prime}-3 \mathrm{y}_{2}{ }^{\prime \prime}-5 \mathrm{y}_{3}$
Subjected to: $2 \mathrm{y}_{1}+3 \mathrm{y}_{2}{ }^{\prime}-3 \mathrm{y}_{2}{ }^{\prime \prime}-\mathrm{y}_{3} \leq 2$

$$
\begin{aligned}
& 3 y_{1}+y_{2}{ }^{\prime}-y_{2}{ }^{\prime \prime}-4 y_{3} \leq 3 \\
& -3 y_{1}-y_{2}{ }^{\prime}+y_{2}^{\prime \prime}+4 y_{3} \leq-3 \\
& 5 y_{1}+7 y_{2}{ }^{\prime}-7 y_{2} \prime \prime-6 y_{3} \leq 4
\end{aligned}
$$

Putting $y_{2}{ }^{\prime}-y_{2}{ }^{\prime \prime}=y_{2}$, we get

Maximise $w=2 y_{1}+3 y_{2}-5 y_{3}$
Subjected to: $2 \mathrm{y}_{1}+3 \mathrm{y}_{2}-\mathrm{y}_{3} \leq 2$

$$
\begin{aligned}
& 3 \mathrm{y}_{1}+\mathrm{y}_{2}-4 \mathrm{y}_{3} \leq 3 \\
& -3 \mathrm{y}_{1}-\mathrm{y}_{2}+4 \mathrm{y}_{3} \leq 3 \\
& 5 \mathrm{y}_{1}+7 \mathrm{y}_{2}-6 \mathrm{y}_{3} \leq 4
\end{aligned}
$$

$$
y_{1}, y_{3} \geq 0 \text { and } y_{2} \text { is unrestricted. }
$$

Q2) (a) Check whether the given matrix $A$ is diagonalizable, diagonalize if it is, where
$\mathbf{A}=\left[\begin{array}{ccc}-9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7\end{array}\right]$.

## Solution:

The characteristic equation of A is
$\left|\begin{array}{ccc}-9-\lambda & 4 & 4 \\ -8 & 3-\lambda & 4 \\ -16 & 8 & 7-\lambda\end{array}\right|=0$
$(-9-\lambda)[(3-\lambda)(7-\lambda)-32]-4(-56+8 \lambda+64)+4(-64+48-16 \lambda)=0$
$\lambda^{3}+\lambda^{2}+5 \lambda+3=0$
$-(\lambda+1)\left(\lambda^{2}-2 \lambda-3\right)=0$
$\lambda=-1, \lambda=-1, \lambda=3$
for $\lambda=-1$,

$$
\left[\begin{array}{ccc}
-8 & 4 & 4 \\
-8 & 4 & 4 \\
-16 & 8 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

By $R_{1} /(-8)$

$$
\left[\begin{array}{ccc}
1 & -1 / 2 & -1 / 2 \\
-8 & 4 & 4 \\
-16 & 8 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

By $R_{2}-(-8) R_{1}$

$$
\left[\begin{array}{ccc}
1 & -1 / 2 & -1 / 2 \\
0 & 0 & 0 \\
-16 & 8 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

By $R_{3}-(-16) R_{1}$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & -1 / 2 & -1 / 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
x_{1}-\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=0
\end{gathered}
$$

The rank of coefficient matrix is 1 . The number of unknowns is 3 . Hence, there are $3-1=2$ linearly independent solution. Putting $x_{2}=2 t$ and $x_{3}=2 s$ then $x_{1}=t+s$.
$X_{1}=\left[\begin{array}{c}t+s \\ 2 t \\ 2 s\end{array}\right]=t\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]+s\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$
Corresponding to the eigenvalue 2 , we get the following two linearly independent eigenvectors.
$X_{1}=\left[\begin{array}{lll}1 & 2 & 0\end{array}\right]^{\prime}$ and $X_{2}=\left[\begin{array}{lll}1 & 0 & 2\end{array}\right]^{\prime}$
for $\lambda=3$,

$$
\left[\begin{array}{ccc}
-12 & 4 & 4 \\
-8 & 0 & 4 \\
-16 & 8 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

By $R_{1} /(-12)$

$$
\left[\begin{array}{ccc}
1 & -1 / 3 & -1 / 3 \\
-8 & 0 & 4 \\
-16 & 8 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

By $R_{2}-(-8) R_{1}$

$$
\left[\begin{array}{ccc}
1 & -1 / 3 & -1 / 3 \\
0 & -8 / 3 & 4 / 3 \\
-16 & 8 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

By $R_{3}-(-16) R_{1}$

$$
\left[\begin{array}{ccc}
1 & -1 / 3 & -1 / 3 \\
0 & -8 / 3 & 4 / 3 \\
0 & 8 / 3 & -4 / 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

By $R_{2} /\left(\frac{-8}{3}\right)$

$$
\left[\begin{array}{ccc}
1 & -1 / 3 & -1 / 3 \\
0 & 1 & -1 / 2 \\
0 & 8 / 3 & -4 / 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

By $R_{3}-\left(\frac{-8}{2}\right) R_{2}$

$$
\left[\begin{array}{ccc}
1 & -1 / 3 & -1 / 3 \\
0 & 1 & -1 / 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

By $R_{1}-\left(\frac{-1}{3}\right) R_{2}$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 0 & -1 / 2 \\
0 & 1 & -1 / 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
x_{1}+0 x_{2}-\frac{1}{2} x_{3}=0 \\
0 x_{1}+x_{2}-\frac{1}{2} x_{3}=0
\end{gathered}
$$

So, $x_{1}=(1 / 2) x_{3} ; x_{2}=(1 / 2) x_{3}$ and $x_{3}=x_{3}$

$$
X_{1}=\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
1
\end{array}\right]
$$

Thus, A is diagonalised to $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$ and the diagonalizing matrix is $\left[\begin{array}{ccc}1 & 1 & 1 / 2 \\ 2 & 0 & 1 / 2 \\ 0 & 2 & 1\end{array}\right]$.
(b) Verify Green's theorem for $\bar{F}=\left(x^{2}-y\right) i+\left(2 y^{2}+x\right) j$ where $\mathbf{C}$ is the boundary of region bounded by $y=x^{2}, y=4$.

## Solution:

By Green's Theorem

$$
\int_{c} P \cdot d x+Q \cdot d y=\iint_{R} \frac{\delta Q}{\delta x}-\frac{\delta P}{\delta y} \cdot d x \cdot d y
$$

$\int_{c} P . d x+Q . d y=\int_{c}\left(x^{2}-\mathrm{y}\right) d x+\left(2 y^{2}+x\right) d y$
Here, $\mathrm{P}=x^{2}-\mathrm{y} ; \mathrm{Q}=2 y^{2}+x$
$\frac{\delta Q}{\delta x}=1 ; \frac{\delta P}{\delta y}=-1$
Along $\mathrm{C} 1, \mathrm{y}=\mathrm{x}^{2}$ and $\mathrm{dy}=2 \mathrm{x}$. dx

$$
\begin{aligned}
\int_{c} P \cdot d x+Q \cdot d y & =\int_{0}^{2}\left[\left(x^{2}-x^{2}\right)+\left(2 x^{4}+x\right) \cdot 2 \mathrm{x}\right] \cdot d x \\
& =\int_{0}^{2}\left(4 x^{5}+2 x^{2}\right) \cdot d x=\left(\left.\frac{4 x^{6}}{6}+\frac{2 x^{3}}{3} \right\rvert\, x=0 \text { to } 2\right) \\
& =\frac{256}{6}+\frac{16}{3}=\frac{144}{3}
\end{aligned}
$$

Along C2, $\mathrm{y}=4$ and $\mathrm{dy}=0$
$\int_{c} P \cdot d x+Q \cdot d y=\int_{2}^{0}\left(x^{2}-4\right) \cdot d x$

$$
=\left(\left.\frac{x^{3}}{3}-4 x \right\rvert\, x=2 \text { to } 0\right)
$$

$$
=0-\left(\frac{8}{3}-8\right)=\frac{16}{3}
$$

Along C3, $x=0$ and $d x=0$

$$
\begin{aligned}
\int_{c} P . d x+Q . d y & =\int_{4}^{0}\left(2 y^{2}\right) d y \\
& =\left(\left.0-\frac{2 y^{3}}{3} \right\rvert\, x=4 \text { to } 0\right) \\
& =0-\left(\frac{128}{3}\right)=\frac{-128}{3}
\end{aligned}
$$

$\int_{c} P \cdot d x+Q . d y=\frac{144}{3}+\frac{16}{3}-\frac{128}{3}=\frac{32}{3}$
$\iint_{R} \frac{\delta Q}{\delta x}-\frac{\delta P}{\delta y} \cdot d x . d y \int_{0}^{4} \int_{0}^{\sqrt{y}} 2 . d x . d y$
$=\int_{0}^{1}(2 x \mid x=0$ to $\sqrt{y}) \cdot d y$
$=2 \int_{0}^{4} \sqrt{y} \cdot d y$
$=\left(\left.2 * \frac{y^{3 / 2}}{3 / 2} \right\rvert\, x=0\right.$ to 4$)=\frac{32}{3}$
From (i) and (ii), the theorem is proved.
(c) The heights of six randomly chosen sailors are in inches : $63,65,68,69,71$ and 72 . The heights of ten randomly soldiers are $\mathbf{: 6 1 , 6 2 , 6 5 , 6 6 , 6 9 , 6 9 , 7 0 , 7 1 , 7 2}$ and 73 . Discuss in the light that these data throw on the suggestion that the soldiers on an average taller than sailors.
(8M)

## Solution:

We first calculate the mean and standard deviation of the heights of both sailors and soldier

| Sailors |  |  | Soldiers |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Height <br> $\mathrm{X}_{1}$ | $\mathrm{d}_{1}$ <br> $\left(x_{1}-\overline{x_{1}}\right)$ | $\mathrm{d}_{1}{ }^{2}$ <br> $\left(x_{1}-\overline{x_{1}}\right)^{2}$ | Height <br> $\mathrm{X}_{2}$ | $\mathrm{d}_{2}$ <br> $\left(x_{2}-\overline{x_{2}}\right)$ | $\mathrm{d}_{2}{ }^{2}$ <br> $\left(x_{2}-\overline{x_{2}}\right)^{2}$ |
| 63 | -5 | 25 | 61 | -6.8 | 46.24 |
| 65 | -3 | 9 | 62 | -5.8 | 33.64 |
| 68 | 0 | 0 | 65 | -2.8 | 7.84 |
| 69 | 1 | 1 | 66 | -1.8 | 3.24 |
| 71 | 3 | 9 | 69 | 1.2 | 1.44 |
| 72 | 4 | 16 | 69 | 1.2 | 1.44 |
|  |  |  | 70 | 2.2 | 4.84 |
|  |  |  | 71 | 3.2 | 10.24 |
|  |  |  | 72 | 4.2 | 17.84 |
| $\sum x_{1}=408$ | 0 | $\sum\left(x_{1}-\overline{x_{1}}\right)^{2}$ | $\sum x_{2}=678$ | 0 | $\sum\left(x_{2}-\overline{x_{2}}\right)^{2}$ |

Now,
$X_{1}=\frac{\sum X_{1}}{N}=\frac{408}{6}=68, \quad X_{2}=\frac{\sum X_{2}}{N}=\frac{678}{10}=67.8$

The unbiased estimate of the common population
$\mathrm{s}_{\mathrm{p}}=\sqrt{\frac{\sum\left(X_{1}-\overline{X_{1}}\right)^{2}+\sum\left(X_{2}-\overline{X_{2}}\right)^{2}}{n_{1}+n_{2}-2}}=\sqrt{\frac{60+153.6}{6+10-2}}=\sqrt{15.26}=3.9$
Null Hypothesis Ho: $\mu_{1}=\mu_{2}$
Alternative Hypothesis Ha: $\mu_{1} \neq \mu_{2}$
Calculation of test statistic
$t=\frac{\overline{X_{1}}-\overline{X_{2}}}{\text { S.E. }}$
Now, $\overline{X_{1}}=68, \quad \overline{X_{2}}=67.8$
S.E. $=\mathrm{s}_{\mathrm{p}} * \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}=3.9 * \sqrt{\frac{1}{6}+\frac{1}{10}}=2.014$
$t=\frac{\overline{X_{1}} \overline{X_{2}}}{\text { S.E. }}=\frac{68-67.8}{2.014}$
Level of significance: $\alpha=0.05$
Critical value: The value of $t$ at $\alpha=0.05$ for $v=6+10-2=14$ degrees of freedom is $\mathrm{t}_{\alpha}=2.145$
Decision: Since the computed value $|t|=0.099$ is smaller than the table value $t_{\alpha}=2.145$, the hypothesis is accepted.

Therefore, the means are equal i.e. the suggestion that the soldiers on the average are taller than sailors cannot be accepted.

Q3) (a) Use Big-M method to solve
Minimise $\mathrm{z}=10 \mathrm{x}_{1}+\mathbf{3} \mathrm{x}_{2}$
Subjected to: $\mathbf{x}_{1}+2 \mathbf{x}_{2} \geq 3$

$$
\begin{aligned}
& x_{1}+4 x_{2} \geq 4 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

## Solution:

Maximise $\mathrm{z}^{\prime}=-\mathrm{z}=-10 \mathrm{x}_{1}-3 \mathrm{x}_{2}$
Subjected to: $\mathrm{x}_{1}+2 \mathrm{x}_{2} \geq 3$

$$
x_{1}+4 x_{2} \geq 4
$$

$z^{\prime}=-10 x_{1}-3 x_{2}-0 s_{1}-0 s_{2}-$ MA $_{1}-$ MA $_{2}$
$\mathrm{x}_{1}+2 \mathrm{x}_{2}-\mathrm{s}_{1}-0 \mathrm{~s}_{2}+\mathrm{A}_{1}+0 \mathrm{~A}_{2} \geq 3$
$\mathrm{x}_{1}+4 \mathrm{x}_{2}-0 \mathrm{~s}_{1}-\mathrm{s}_{2}+0 \mathrm{~A}_{1}+\mathrm{A}_{2} \geq 4$

We now eliminate $-\mathrm{MA}_{1}$ and $-\mathrm{MA}_{2}$ from the object function by adding M times the first and second constraints to the object function.
$z^{\prime}=-10 x_{1}-3 x_{2}-0 s_{1}-0 s_{2}-M A_{1}-M A_{2}+-10 x_{1}-3 x_{2}+M x_{1}+2 M x_{2}-M s_{1}+M A_{1}-3 M+M x_{1}+4 M x_{2}-M s_{2}+$ $\mathrm{MA}_{2}-4 \mathrm{M}$
$z^{\prime}=(-10+2 M) x_{1}+(-3+6 M) x_{2}-\mathrm{Ms}_{1}-\mathrm{Ms}_{2}+0 \mathrm{~A}_{1}+0 \mathrm{~A}_{2}-7 \mathrm{M}$
$\mathrm{z}^{\prime}+(10-2 \mathrm{M}) \mathrm{x}_{1}+(3-6 \mathrm{M}) \mathrm{x}_{2}+\mathrm{Ms}_{1}+\mathrm{Ms}_{2}+0 \mathrm{~A}_{1}+0 \mathrm{~A}_{2}=7 \mathrm{M}$
and constraints as above
Setting $\mathrm{x}_{1}=0, \mathrm{x}_{2}=0, \mathrm{~s}_{1}=0, \mathrm{~s}_{2}=0$, we have $\mathrm{A}_{1}=3, \mathrm{~A}_{2}=4$

| Iteration <br> No. | Basic | Coefficient |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | Vaf. | $\mathrm{x}_{1}$ | $\mathrm{x}_{2}$ | $\mathrm{~s}_{1}$ | $\mathrm{~s}_{2}$ | $\mathrm{~A}_{1}$ | $\mathrm{~A}_{2}$ | R.H.S. |
| Soln | Ratio |  |  |  |  |  |  |  |
| 0 | $\mathrm{z}^{\prime}$ | $10-2 \mathrm{M}$ | $3-6 \mathrm{M}$ | M | M | 0 | 0 | -7 M |


| $\mathrm{A}_{2 \text { leaves }}$ | $\mathrm{A}_{1}$ | 1 | 2 | -1 | 0 | 1 | 0 | 3 | 1.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{x}_{1 \text { enters }}$ | $\mathrm{A}_{2}$ | 1 | $4^{*}$ | 0 | -1 | 0 | 1 | 4 | 1 |


| 1 | $z$ | $37 / 4-M / 2$ | 0 | M | $3 / 4-\mathrm{M} / 2$ | 0 | $-\mathrm{M}-3$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| $\mathrm{A}_{1 \text { leaves }}$ | $\mathrm{A}_{1}$ | $1 / 2^{*}$ | 0 | -1 | $1 / 2$ | 0 |  | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathrm{~S}_{2 \text { enters }}$ | $\mathrm{x}_{2}$ | $1 / 4$ | 1 | 0 | $-1 / 4$ | 0 |  |
| 2 | z | $17 / 2$ | 0 |  | $3 / 2$ | 0 |  | 1 |
| 4 |  |  |  |  |  |  |  |  |


|  | $\mathrm{s}_{2}$ | 1 | 0 | -2 | 1 |  |  | 2 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathrm{x}_{2}$ | $1 / 2$ | 0 | $-1 / 2$ | 0 |  |  | $3 / 2$ |  |

$\mathrm{x}_{1}=0 \quad \mathrm{x}_{2}=3 / 2 \quad \mathrm{z}^{\prime}=-9 / 2 \quad \mathrm{z}=9 / 2$
(b) Using Gauss Divergence Theorem, evaluate $\iint_{S} \bar{N} . \bar{F}$ where $S$ is the surface of the region bounded by cylinder $x^{2}+y^{2}=4, z=0, z=6$ and $\bar{F}=2 x i+x y j+z k$.

## Solution:

By divergence formula,
$\iint_{S} \bar{F} \cdot d \bar{S}=\iiint_{V} \nabla \cdot \bar{F} \cdot d i v$
Now, $\bar{F}=2 x i+x y j+z k$
$\nabla \cdot \bar{F}=\frac{\delta(2 x)}{\delta x}+\frac{\delta(x y)}{\delta y}-\frac{\delta(z)}{\delta z}$

$$
\begin{aligned}
& =2+x+1 \\
& =3+x
\end{aligned}
$$

$\iiint_{V} \nabla \cdot \bar{F} \cdot d i v=\iiint_{V}(3+x) \cdot d v=\iiint_{V}(3+x) \cdot d x \cdot d y \cdot d z$
Now, to cover the whole volume bounded by the cylinder $y^{2}=4, z=0$ and $z=6$, z varies from 0 to 6 , y varies from $-\sqrt{4-x^{2}}$ to $\sqrt{4-x^{2}}$, and $x$ varies from -2 to 2


$$
\begin{aligned}
& \iiint_{V}(3+x) \cdot d x \cdot d y \cdot d z=\int_{x=-2}^{2} \int_{y=-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{z=0}^{6}(3+x) \cdot d x d y d z \\
= & \int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}}(3 z+x z \mid z=0 \text { to } 6) \cdot d x d y \\
= & \int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} 18+6 x \cdot d x d y \\
= & \int_{-2}^{2}\left(18 y+6 x y \mid x=-\sqrt{4-x^{2}} \text { to } \sqrt{4-x^{2}}\right) \\
= & \int_{-2}^{2} 18 \sqrt{4-x^{2}}+6 x \sqrt{4-x^{2}}-\left(-18 \sqrt{4-x^{2}}-6 x \sqrt{4-x^{2}}\right) \cdot d x \\
= & \int_{-2}^{2} 18 \sqrt{4-x^{2}}+12 x \sqrt{4-x^{2}} \cdot d x \\
= & \left(\left.36\left(\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right)-4\left(4-x^{2}\right)^{3 / 2} \right\rvert\, x=-2 \text { to } 2\right) \\
= & 72 \pi
\end{aligned}
$$

(c) Find the rank, index, signature and class of the following Quadratic Form by reducing it to its canonical form using Congruent transformations $4 x^{2}+3 y^{2}+12 z^{2}-8 x y+16 y z-20 x z$.

## Solution:

The matrix form is
$\mathrm{A}=\left[\begin{array}{ccc}4 & -4 & -10 \\ -4 & 3 & 8 \\ -10 & 8 & 12\end{array}\right]$
We write A=IAI
$\left[\begin{array}{ccc}4 & -4 & -10 \\ -4 & 3 & 8 \\ 10 & 8 & 12\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
By $R_{2}+R_{1}, R_{3}+\frac{10}{4} R_{1}, C_{2}+C_{1}, C_{3}+\frac{10}{4} C_{1}$

$$
\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & -1 & -2 \\
0 & -2 & -13
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
10 / 4 & 0 & 1
\end{array}\right] A\left[\begin{array}{ccc}
1 & 1 & 10 / 4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

By $R_{3}+2 R_{2}, C_{3}-2 C_{2}$

$$
\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 17
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
9 / 2 & 2 & 1
\end{array}\right] A\left[\begin{array}{ccc}
1 & 1 & 9 / 2 \\
0 & -1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 9 / 2 \\
0 & -1 & 2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]
$$

$x_{1}=y_{1}+y_{2}+\frac{9}{2} y_{3}$
$x_{2}=-y_{2}+2 y_{3}$
$x_{3}=y_{3}$
The rank $=3$, index $=2$
Signature $=$ difference between positive squares and negative squares $=2-1=1$
Since some diagonal elements are positive, some are negative, the value class is indefinite.

Q4 (a) The number of accidents in a year attributed to taxi drivers in a city follow Poisson distribution with mean 3 . Out of 1000 taxi drivers, with (i) no accidents in a year (ii) more than 3 accidents in a year.

## Solution:

$\mathrm{P}(\mathrm{X}=\mathrm{x})=\frac{e^{-m_{m}}}{x!}, \mathrm{x}=0,1,2, \ldots \ldots$
We are given $\mathrm{m}=3$
$\mathrm{P}(\mathrm{X}=\mathrm{x})=\frac{e^{-3} 3^{x}}{x!}, \mathrm{x}=0,1,2, \ldots \ldots$
$\mathrm{P}(\mathrm{X}=0)=\frac{e^{-3} 3^{0}}{0!}=0.0498$
$\mathrm{P}(\mathrm{X}=1)=\frac{e^{-3} 3^{1}}{1!}=0.1494$
$\mathrm{P}(\mathrm{X}=2)=\frac{e^{-3} 3^{2}}{2!}=0.2241$
$\mathrm{P}(\mathrm{X}=3)=\frac{e^{-3} 3^{3}}{3!}=0.2241$
Expected number of drivers with no accidents $=\mathrm{N} \times \mathrm{p}(0)=1000 \times 0.0498=49.8=50$ nearly $\mathrm{p}(0,1,2$ accidents $)=\mathrm{p}(0)+\mathrm{p}(1)+\mathrm{p}(2)=0.0498+0.1494+0.2241=0.4233$
$\mathrm{p}($ more than 3 accidents $)=1-0.4233=0.5767$
Expected number of drivers with more than 3 accidents $=\mathrm{Nxp}=1000 \times 0.5676$

$$
=576.7=577 \text { nearly } .
$$

(b) Verify Cayley Hamilton Theorem and hence find $A^{-1}$, if $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$.

## Solution:

The characteristic equation is
$|A-\lambda I|=0$
$\left|\begin{array}{ccc}2-\lambda & -1 & 1 \\ -1 & 2-\lambda & -1 \\ 1 & -1 & 2-\lambda\end{array}\right|=0$
$(2-\lambda)\left[(2-\lambda)^{2}-1\right]+1[-1(2-\lambda)]+1[1-(2-\lambda)]=0$
$\lambda^{3}-6 \lambda^{2}+9 \lambda-4=0$

Cayley Hamilton Theorem states this equation is satisfied by A
$A^{3}-6 A^{2}+9 A-4 I=0$
Now, $A^{2}=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]=\left[\begin{array}{ccc}6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6\end{array}\right]$
$A^{3}=\left[\begin{array}{ccc}6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6\end{array}\right]\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]=\left[\begin{array}{ccc}22 & -21 & 21 \\ -21 & 22 & -21 \\ 21 & -21 & 22\end{array}\right]$

$$
\begin{aligned}
A^{3}-6 A^{2}+9 A-4 I & =\left[\begin{array}{ccc}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & 22
\end{array}\right]-6\left[\begin{array}{ccc}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]+9\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]-4\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Now multiply the equation by $\mathrm{A}^{-1}$,
$4 \mathrm{~A}^{-1}=\left(A^{2}-6 \mathrm{~A}+9 I\right)$

$$
=\left[\begin{array}{ccc}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]-6\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]+9\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$\mathrm{A}^{-1}=\frac{1}{4}\left[\begin{array}{ccc}3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right]$
(c) In a test given to two groups of students drawn from two normal populations marks obtained were as follows

Group A:18, 20, 36, 50, 49, 36, 34, 49, 41
Group B:26, 28, 26, 35, 30, 30, 44, 46
Examine the equality of variances (Given: $F_{0.025}=5.6$ with d.f. $8 \& 6$ and $F_{0.025}=4.65$ with d.f. $6 \& 8$. )
Solution:
(8M)
We first calculate the mean and standard deviation of the heights of both sailors and soldier

| Group A |  |  | Soldiers |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| X | $(x-\bar{x})$ | $(x-\bar{x})^{2}$ | y | $(y-\bar{y})$ | $(y-\bar{y})^{2}$ |
| 18 | -19 | 396 | 29 | -5 | 25 |
| 20 | -17 | 289 | 28 | -6 | 36 |
| 36 | -1 | 1 | 26 | -8 | 64 |
| 50 | 13 | 169 | 35 | 1 | 1 |
| 49 | 12 | 144 | 30 | -4 | 16 |
| 36 | -1 | 1 | 44 | 10 | 100 |
| 34 | -3 | 9 | 46 | 12 | 144 |
| 49 | 12 | 144 |  |  |  |
| 41 | 4 | 16 |  |  |  |
|  |  |  |  |  |  |
| $\sum x=333$ | 0 | $\sum_{=1134}(x-\bar{x})^{2}$ | $\sum y=238$ | 0 | $\sum_{=386}(y-\bar{y})^{2}$ |

$\bar{x}=\frac{333}{9}=37, \bar{y}=\frac{238}{7}=34$
$\sum\left(x_{i}-\bar{x}\right)^{2}=1134, \sum\left(y_{i}-\bar{y}\right)^{2}=386$
Null Hypothesis $\left(\mathrm{H}_{\mathrm{o}}\right): \sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$
Alternate Hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right): \sigma_{1}{ }^{2} \neq \sigma_{2}{ }^{2}$

Calculation of test statistic
$F=\frac{n_{1} s_{1}{ }^{2} /\left(n_{1}-1\right)}{n_{2} s_{2}{ }^{2} /\left(n_{2}-1\right)}$
But $n_{1} s_{1}{ }^{2}=\sum\left(x_{i}-\bar{x}\right)^{2}$ and $n_{2} s_{2}{ }^{2}=\sum\left(y_{i}-\right.$ $\bar{y})^{2}$

$F=\frac{1134 / 8}{386 / 6}=2.203$
Level of significance: $\alpha=0.05$
Degrees of freedom: $v_{1}=n_{1}-1=9-1=8$ for the numerator

$$
v_{2}=n_{2}-1=7-1=6 \text { for the denominator }
$$

Critical Value: The table value
$F_{(8,6)}(0.025)=5.6$
$F_{(6,8)}(0.025)=4.65$
And $\frac{1}{F_{(6,8)}(0.025)}=\frac{1}{4.65}=0.215$
Decision: Since the calculation value $\mathrm{F}=2.203$ lies between 0.215 and 4.65 , we accept the null hypothesis

Q5) (a) Show that $A=\left[\begin{array}{ccc}5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4\end{array}\right]$ is derogatory and hence find minimal polynomial.

## Solution:

The characteristic equation of A is
$|A-\lambda I|=0$
$\left|\begin{array}{ccc}5-\lambda & -6 & -6 \\ -1 & 4-\lambda & 2 \\ 3 & -6 & -4-\lambda\end{array}\right|=0$
$(5-\lambda) *[(4-\lambda) *(-4-\lambda)+12]+6[4+\lambda-6]-6[6-3(4-\lambda)]=0$
$(5-\lambda) *\left(-4-\lambda^{2}\right)+6[-2+\lambda]-6[-6-3 \lambda]=0$
$\lambda^{3}-5 \lambda^{2}+8 \lambda-4=0$
$(\lambda-2)(\lambda-2)(\lambda-1)=0$
$\lambda=2,2,1$

Let us now find minimal polynomial of A . We know that each characteristic root of A is a root of the minimal polynomial of A. So if $f(x)$ is the minimal polynomial of A, then (x-2) and (x-1) are the factors of $\mathrm{f}(\mathrm{x})=x^{2}-3 x+2$

Let us see whether $(x-2)(x-1)=x^{2}-3 x+2$ annihilates A

$$
\begin{aligned}
A^{2}-3 A+2 I & =\left[\begin{array}{ccc}
5 & -6 & -6 \\
-1 & 4 & 2 \\
3 & -6 & -4
\end{array}\right]\left[\begin{array}{ccc}
5 & -6 & -6 \\
-1 & 4 & 2 \\
3 & -6 & -4
\end{array}\right]-3\left[\begin{array}{ccc}
5 & -6 & -6 \\
-1 & 4 & 2 \\
3 & -6 & -4
\end{array}\right]+2\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
13 & -18 & -18 \\
-2 & 10 & 2 \\
9 & -18 & -14
\end{array}\right]-\left[\begin{array}{ccc}
15 & -18 & -18 \\
-3 & 12 & 6 \\
9 & -18 & -12
\end{array}\right]+\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Thus, $f(x)$ is monic polynomial of lowest degree that annihilates A. Hence $f(x)$ is minimal polynomial of A. Since its degree is less than the order of $\mathrm{A}, \mathrm{A}$ is derogatory.
(b) Prove that $\bar{F}=2 x y z^{2} i+\left(x^{2} z^{2}+z \cos y z\right) j+\left(2 x^{2} y z+y \cos y z\right) k$ is a conservative field. Find $\phi$ such that $\overline{\boldsymbol{F}}=\nabla . \phi$. Hence find the work done in moving an object in this field from $(0,0,1)$ to $(1, \pi / 4,2)$. Solution:
$\operatorname{Curl}(\bar{F})=\left|\begin{array}{ccc}i & j & k \\ \frac{\delta}{\delta x} & \frac{\delta}{\delta y} & \frac{\delta}{\delta z} \\ 2 x y z^{2} & x^{2} z^{2}+z \cos y z & 2 x^{2} y z+y \cos y z\end{array}\right|$

$$
=\left(2 x^{2} z+\cos y z-y z \sin y z-2 x^{2} z+y z \sin y z-\cos y z\right) i+(4 x y z-4 x y z) j \quad+\left(2 x z^{2}-2 z x^{2}\right) k
$$

$$
=0
$$

$\bar{F}$ is irrotatonal.
Since $\bar{F}$ is irrotatonal there exists a scalar function $\phi$, such that $\bar{F}=\nabla . \phi$

$$
2 x y z^{2} i+\left(x^{2} z^{2}+z \cos y z\right) j+\left(2 x^{2} y z+y \cos y z\right) k=\frac{\delta \phi}{\delta x}+\frac{\delta \phi}{\delta y}+\frac{\delta \phi}{\delta z}
$$

$\frac{\delta \phi}{\delta x}=2 x y z^{2} ; \quad \frac{\delta \phi}{\delta y}=\left(x^{2} z^{2}+z \cos y z\right) ; \frac{\delta \phi}{\delta z}=\left(2 x^{2} y z+y \cos y z\right)$
$\mathrm{d} \phi=\frac{\delta \phi}{\delta x} d x+\frac{\delta \phi}{\delta y} d y+\frac{\delta \phi}{\delta z} d z$

$$
\begin{aligned}
& =2 x y z^{2} d x+\left(x^{2} z^{2}+z \cos y z\right) d y+\left(2 x^{2} y z+y \cos y z\right) d z \\
& =\left(2 x y z^{2} d x+x^{2} z^{2} d y+2 x^{2} y z d z\right)+(z \cos y z d y+y \cos y z d z) \\
& =d\left(x^{2} y z^{2}+\sin y z\right)
\end{aligned}
$$

$\Phi=x^{2} y z^{2}+\sin y z$
Now, Work done $=\int_{c} \bar{F} \cdot d \bar{r}=\int_{c} d\left(x^{2} y z^{2}+\sin y z\right.$

$$
\begin{aligned}
& =\left(x^{2} y z^{2}+\sin y z \mid(0,0,1) \text { to }\left(1, \frac{\pi}{4}, 2\right)\right) \\
& =\pi+1
\end{aligned}
$$

(c) Out of a sample 120 persons in a village, 76 were administered a new drug for preventing influenza and out of them 24 persons were attacked by influenza. Out of these were not administered the new drugs, 12 persons were not affected by influenza. Use chi-square method to find out whether the new drug is effective or not?

## Solution:

The above data can be arranged in the following $2 \times 2$ contingency table

| New drug | Effect of | Influenza |  |
| :--- | :--- | :--- | :--- |
|  | Attacked |  | 76 |
| Administered | 24 | $76-24=52$ | $120-76=44$ |
| Not administered | $44-12=32$ | 12 | 120 |
| Total | $120-64=56$ <br> $24+32=56$ | $52+12=64$ |  |

Null Hypothesis: 'Attack of influenza' and the administration of the new drug are independent
Computation of statistic:

$$
\begin{aligned}
x_{o}^{2} & =\frac{N(a d-b c)^{2}}{(a+c)(b+d)(a+b)(c+d)} \\
& =\frac{120(24 * 12-52 * 32)^{2}}{56 * 64 * 76 * 44} \\
& =\frac{120 * 1376^{2}}{54 * 64 * 76 * 44}=18.95
\end{aligned}
$$

Expected value:
$x_{e}{ }^{2}=\sum\left(\frac{(O-E)^{2}}{E}\right)$ follows $x^{2}$ distribution with $(2-1) \times(2-1)$ d.f. $=3.84$
Inference: Since $x_{o}{ }^{2}=x_{e}{ }^{2}$, Ho is rejected at $5 \%$ level of significance. Hence we conclude that the new drug is definitely effective in controlling (preventing) the disease (influenza).

Q6) (a) Evaluate $\int_{c}(x+2 y) d x+(x-z) d y+(y-z) d z$ where $C$ is the boundary of the triangle with vertices $(\mathbf{2}, 0,0),(0,3,0),(0,0,6)$ oriented in the anticlockwise direction.

## Solution:

By Stokes theorem $\int_{c} \bar{F} d \bar{r}=\iint_{S} \bar{N} \cdot \nabla \cdot \bar{F} d s$
Now, $\nabla X \bar{F}=\left|\begin{array}{ccc}i & j & k \\ \frac{\delta}{\delta x} & \frac{\delta}{\delta y} & \frac{\delta}{\delta z} \\ x+2 y & x-z & y-z\end{array}\right|=(1+1) i-(0-1) j+(1-2) k$

$$
=2 \mathrm{i}+\mathrm{j}-1 \mathrm{k}
$$

Further $\phi=3 x+2 y+z-6$
Normal to the plane ABC ,
$\nabla \phi=\frac{\delta \phi}{\delta x} i+\frac{\delta \phi}{\delta y} j+\frac{\delta \phi}{\delta z} k=3 i+2 j+1 k$
Unit normal to the plane $\triangle \mathrm{ABC}$
$\bar{N}=\frac{\nabla \phi}{|\nabla \phi|}=\frac{3 i+2 j+1 k}{\sqrt{14}}$
$\iint_{C} \bar{N} . \nabla X \bar{F} . d s=\iint_{C}\left(\frac{3 i+2 j+1 k}{\sqrt{14}}\right)(2 i+j-k) . \mathrm{ds}$

$$
=\iint_{c} \frac{3 * 2+2 * 1+1 *(-1)}{\sqrt{14}} \cdot d s
$$

$$
=\iint_{c} \frac{7}{\sqrt{14}} \cdot d s
$$

The equation of the plane is $\frac{x}{2}+\frac{y}{3}+\frac{z}{6}=1$,

$\mathrm{OA}=2, \mathrm{OB}=3, \mathrm{OC}=6$
But $\iint d s$ over the triangle ABC is the area of the triangle ABC . If $\mathrm{AB}=\mathrm{c}, \mathrm{BC}=\mathrm{a}, \mathrm{CA}=\mathrm{b}$ and $\theta$ is the angle between AB and BC , then the area of $\triangle \mathrm{ABC}=\frac{1}{2} a c \sin \theta$.

By cosine rule, $b^{2}=a^{2}+c^{2}-2 \mathrm{ac} \cos \theta$
Now, $a^{2}=36+9=45, b^{2}=36+4=40, c^{2}=9+4=13$
$40=45+13-2 * \sqrt{45} * \sqrt{13} \cos \theta$

$$
\begin{gathered}
\cos \theta=\frac{18}{2 * \sqrt{45} * \sqrt{13}}=\frac{9}{\sqrt{45} * \sqrt{13}} \\
\sin \theta=\sqrt{1-\cos \theta^{2}}=\sqrt{1-\left(\frac{9}{\sqrt{45} * \sqrt{13}}\right)^{2}}=\sqrt{\frac{504}{45 * 13}}
\end{gathered}
$$

area of $\triangle \mathrm{ABC}=\frac{1}{2} a c \sin \theta=0.5 * \sqrt{45} * \sqrt{13} * \sqrt{\frac{504}{45 * 13}}=\sqrt{126}$
$\iint \quad d s=\sqrt{126}$
$\iint_{c} \bar{N} . \nabla X \bar{F} . d s=\frac{7 \sqrt{126}}{\sqrt{14}}=7 \sqrt{9}=21$
(b) Ten individual are chosen at random from a population and their heights are found to be (inches): 63, 63, 66, 67, 68, 69, 70, 71 and 71. In the light of the data, discuss the suggestion that the mean height in the population is 66 inches.

## Solution:

$\mathrm{N}=10(<30$, so it is small sample)
Null Hypothesis $\left(\mathrm{H}_{\mathrm{o}}\right): \mu=65$
Alternate Hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right): \mu!=65$ [two tailed test]
LOS $=5 \%$ (two tailed test)

Degree of freedom $=n-1=10-1=9$
Critical value $\left(\mathrm{t}_{\alpha}\right)=2.2622$

| Values $\left(x_{i}\right)$ | $D_{i}=x_{i}-67$ | $D_{i}{ }^{2}$ |
| :---: | :---: | :---: |
| 63 | -4 | 16 |
| 63 | -4 | 16 |
| 64 | -3 | 9 |
| 65 | -2 | 4 |
| 66 | -1 | 1 |
| 69 | 2 | 4 |
| 69 | 2 | 4 |
| 70 | 3 | 9 |
| 70 | 3 | 9 |
| 71 | 4 | 16 |
| Total | 0 | 88 |

$\bar{d}=\frac{\sum d_{i}}{n}=\frac{0}{10}=0$
$\bar{x}=a+\bar{d}=67+0=67$
Since sample is small, $s=\sqrt{\frac{\sum d_{i}{ }^{2}}{n}-\left(\sqrt{\frac{\sum d_{i}}{n}}\right)^{2}}$

$$
\begin{aligned}
&=\sqrt{\frac{88}{10}-\left(\sqrt{\frac{0}{10}}\right)^{2}}=2.9965 \\
&=. E .=\frac{s}{\sqrt{n-1}}=\frac{2.9965}{\sqrt{10-1}}=0.9888
\end{aligned}
$$

Step 4: Test statistic

$$
t_{c a l}=\frac{\bar{x}-\mu}{S . E .}=\frac{67-65}{0.9888}=2.0227
$$

Step 5: Decision
Since $\left|\mathrm{t}_{\mathrm{cal}}\right|<\mathrm{t}_{\mathrm{x}}, \mathrm{H}_{0}$ is accepted.
The mean height of the universe is 65 inches.
(c) Using dual simplex method solve the given LPP

## Minimise $\mathbf{z}=\mathbf{2 x} 1+\mathbf{x}_{2}$

Subjected to: $3 \mathrm{x}_{1}+\mathrm{x}_{2} \leq \mathbf{3}$,

$$
\begin{aligned}
& 4 x_{1}+3 x_{2} \geq 6, \\
& x_{1}+2 x_{2} \leq 3, \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

## Solution:

Minimise $\mathrm{z}=2 \mathrm{x}_{1}+\mathrm{x}_{2}$
Subjected to: $3 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 3$

$$
\begin{aligned}
& -4 x_{1}-3 x_{2} \leq-6, \\
& x_{1}+2 x_{2} \leq 3 .
\end{aligned}
$$

Introducing the slack variables $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}$.
Maximise $\mathrm{z}=2 \mathrm{x}_{1}+\mathrm{x}_{2}-0 \mathrm{~s}_{1}-0 \mathrm{~s}_{2}-0 \mathrm{~s}_{3}$

$$
\mathrm{z}-2 \mathrm{x}_{1}-\mathrm{x}_{2}+0 \mathrm{~s}_{1}+0 \mathrm{~s}_{2}+0 \mathrm{~s}_{3}
$$

Subjected to: $3 \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{s}_{1}+0 \mathrm{~s}_{2}+0 \mathrm{~s}_{3}=3$

$$
\begin{aligned}
& -4 x_{1}-3 x_{2}+0 s_{1}+s_{2}+0 s_{3}=-6 \\
& x_{1}+2 x_{2}+0 s_{1}+0 s_{2}+s_{3}=3
\end{aligned}
$$



